Monte Carlo Simulations of Radiative Transfer: Basics of Radiative Transfer Theory (Part I)

SOURCE FOR CONTENT: Chandrasekhar, S., 1960. Radiative Transfer. 1. 


In this post, I will be discussing the basics of radiative transfer theory necessary to understand the methods used in this project. I will start with some definitions, then I will look at the radiative transfer equation and consider two simple cases of scattering.

The first definition we require is the specific intensity, which is the amount of energy associated with a specific frequency dE_{\nu} passing through an area dA constrained to a solid angle d\Omega in a time dt. We may write this mathematically as

dE_{\nu}=I_{\nu}\cos{\theta}d\nu d\Sigma d\Omega dt. (1)

We must also consider the net flux given by

\displaystyle d\nu d\Sigma dt \int I_{\nu}\cos{\theta}d\Omega, (2)

where if we integrate over all solid angles \Omega we get

\pi F_{\nu}=\displaystyle \int I_{\nu}\cos{\theta}d\Omega. (3)

Let d\Lambda be an element of the surface \Lambda in a volume V through which radiation passes. Further let \Theta and \theta denote the angles which form normals with respect to elements d\Lambda and d\Sigma. These surfaces are joined by these normals and hence we have the surface across which energy flows  includes the elements d\Lambda and d\Sigma, given by the following:

I_{\nu}\cos{\Theta}d\Sigma d\Omega^{\prime}d\nu = I_{\nu}d\nu \frac{\cos{\Theta}\cos{\theta}d\Sigma d\Lambda}{r^{2}} (4),

where d\Omega^{\prime}=d\Lambda \cos{\Theta}/r^{2} is the solid angle subtended by the surface element d\Lambda at a point P and volume element dV=ld\Sigma \cos{\theta} is the volume that is intercepted in volume V. If we take this further, and integrate over all V and \Omega we arrive at

\displaystyle \frac{d\nu}{c}\int dV \int I_{\nu} d\Omega=\frac{V}{c}d\nu \int I_{\nu}d\Omega, (5)

where if the radiation travels some distance L in the volume, then we must multiply Eq.(5) by l/c, where c is the speed of light.

We now define the integrated energy density as being

U_{\nu}=\displaystyle \frac{1}{c}\int I_{\nu}d\Omega, (6.1)

while the average intensity is

J_{\nu}=\displaystyle \frac{1}{4\pi}\int I_{\nu}d\nu, (6.2)

and the relation between these two equations is

U_{\nu}=\frac{4\pi}{c}J_{\nu}. (6.3)

I will now introduce the radiative transfer equation. This equation is a balance between the amount of radiation absorbed and the radiation that is emitted. The equation is,

\frac{dI_{\nu}}{ds}=-\epsilon \rho I_{\nu}+h_{\nu}\rho, (7)

where if we divide by \epsilon \rho we get

-\frac{1}{\epsilon_{\nu}\rho}\frac{dI_{\nu}}{ds}=I_{\nu}+U_{\nu}(\theta, \phi), (8)

where U(\theta,\phi) represents the source function given by

U_{\nu}(\theta,\phi)=\displaystyle \frac{1}{4\pi}\int_{0}^{\pi}\int_{0}^{2\pi}p(\theta,\phi;\theta^{\prime},\phi^{\prime})I_{\nu}\sin{\theta^{\prime}}d\theta^{\prime}d\phi^{\prime}. (9)

The source function is typically the ratio between the absorption and emission coefficients. One of the terms in the source function is the phase function which varies according to the specific scattering geometry. In its most general form, we can represent the phase function as an expansion of Legendre polynomials:

p(\theta, \phi; \theta^{\prime},\phi^{\prime})=\displaystyle \sum_{j=0}^{\infty}\gamma_{j}P_{j}(\mu), (10)

where we have let \mu = \cos{\theta} (in keeping with our notation in previous posts).

In Part II, we will discuss a few simple cases of scattering and their corresponding phase functions, as well as obtaining the formal solution of the radiative transfer equation. (DISCLAIMER: While this solution will be consistent in a mathematical sense, it is not exactly an insightful solution since much of the more interesting and complex cases involve the solution of either integro-differential equations or pure integral equations (a possible new topic).)


One thought on “Monte Carlo Simulations of Radiative Transfer: Basics of Radiative Transfer Theory (Part I)

  1. Pingback: Monte Carlo Simulations of Radiative Transfer: Basics of Radiative Transfer Theory (Part IIa) | Understanding Physics and Astronomy

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s