Legendre Polynomials

Some time ago, I wrote a post discussing the solution to Legendre’s ODE. In that post, I discussed what is an alternative definition of Legendre polynomials in which I stated Rodriguez’s formula:

\displaystyle \frac{1}{2^{p}p!}\frac{d^{p}}{dx^{p}}\bigg\{(x^{2}-1)^{p}\bigg\}, (0.1)


\displaystyle P_{p}(x)=\sum_{n=0}^{\alpha}\frac{(-1)^{n}(2p-2n)!}{2^{p}{n!}(p-n)!(p-2n)!} (0.2),


\displaystyle P_{p}(x)=\sum_{n=0}^{\beta}\frac{(-1)^{n}(2p-2n)!}{2^{p}{n!}(p-n)!(p-2n)!} (0.3)

in which I have let \displaystyle \alpha=p/2 and \displaystyle \beta=(p-1)/2 corresponding to the even and odd expressions for the Legendre polynomials.

However, in this post I shall be using the approach of the generating function. This will be from a purely mathematical perspective, so I am not applying this to any particular topic of physics.

Consider a triangle with sides \displaystyle X,Y.Z and angles \displaystyle \theta, \phi, \lambda. The law of cosines therefore maintains that

\displaystyle Z^{2}=X^{2}+Y^{2}-2XY\cos{(\lambda)}. (1)

We can factor out \displaystyle X^{2} from the left hand side of Eq.(1), take the square root and invert this yielding

\displaystyle \frac{1}{Z}=\frac{1}{X}\bigg\{1+\bigg\{\frac{Y}{X}\bigg\}^{2}-2\bigg\{\frac{Y}{X}\bigg\}\cos{(\lambda)}\bigg\}^{-1/2}. (2)

Now, we can expand this by means of the binomial expansion. Let \displaystyle \kappa \equiv \bigg\{\frac{Y}{X}\bigg\}^{2}-2\bigg\{\frac{Y}{X}\bigg\}\cos{(\lambda)}, therefore the binomial expansion is

\displaystyle \frac{1}{(1+\kappa)^{1/2}}=1-\frac{1}{2}\kappa+\frac{3}{8}\kappa^{2}-\frac{5}{16}\kappa^{3}+... (3)

Hence if we expand this in terms of the sides and angle(s) of the triangle and group by powers of \displaystyle (y/x) we get

\displaystyle \frac{1}{Z}=\frac{1}{X}\bigg\{1+\bigg\{\frac{Y}{X}\bigg\}\cos{(\lambda)}+\bigg\{\frac{Y}{X}\bigg\}^{2}\frac{1}{2}(3\cos^{2}{(\lambda)}-1)+\bigg\{\frac{Y}{X}\bigg\}^{3}\frac{1}{2}(5\cos^{3}{(\lambda)}-3\cos{(\lambda)}\bigg\}.(4)

Notice the coefficients, these are precisely the expressions for the Legendre polynomials. Therefore, we see that

\displaystyle \frac{1}{Z}=\frac{1}{X}\bigg\{\sum_{l=0}^{\infty}\bigg\{\frac{Y}{X}\bigg\}^{l}P_{l}(\cos{(\lambda)}\bigg\}, (5)


\displaystyle \frac{1}{Z}=\frac{1}{\sqrt[]{X^{2}+Y^{2}-2XY\cos{(\lambda)}}}=\sum_{l=0}^{\infty}\frac{Y^{l}}{X^{l+1}}P_{l}(\cos{(\lambda)}. (6)

Thus we see that the generating function \displaystyle 1/Z generates the Legendre polynomials. Two prominent uses of these polynomials includes gravity and its application to the theory of potentials of a spherical mass distributions, and the other is that of electrostatics. For example, suppose we have the potential equation

\displaystyle V(r)=\frac{1}{4\pi\epsilon_{0}}\int_{V}\rho(R)\frac{\hat{\mathcal{R}}}{\mathcal{R_{0}}}d\tau. (7.1)

We may use the result of the generating function to get the following result for the electric potential due an arbitrary charge distribution

\displaystyle V(\mathcal{R})=\frac{1}{4\pi\epsilon_{0}}\sum_{l=0}^{\infty}\frac{\mathcal{R}^{l}}{\mathcal{R_{0}}^{l+1}}\int P_{l}(\cos{(\lambda)}). (7.2)

(For more details, see Chapter 3 of Griffith’s text: Introduction to Electrodynamics.)


Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s